Chapter 5 Trigonometric Ratios R.D. Sharma Solutions for Class 10th Math Exercise 5.1
Exercise 5.11. In each of the following one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
(i) sinA = 2/3
Solution
(ii) cosA = 4/5
Solution
(iv) Sinθ = 11/5
Solution
(v) tanα = 5/12
Solution
(vi) Sinθ = √3/2
Solution
(vii) Cosθ = 7/25
(viii) tanθ = 8/15
(ix) cotθ = 12/5
Solution
(x) secθ = 13/5
(xi) cosecθ = √10
Solution
(xii) cosecθ = 12/5
Solution
2. In a ∆ABC, right angled at B, AB = 24 cm, BC = 7 cm. Determine
(i) Sin A, Cos A
(ii) Sin C, cos C
Solution
3. In Fig below, Find tan P and cot R. Is tan P = cot R ?
Solution
4. If sinA = 9/41, compute cosA and tanA.
Solution
5. Given 15 cot A = 8, find SinA and SecA .
6. In ∆PQR, right angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of sin P, sin R, sec P and sec R.
(i) (1+sinθ)(1-sinθ)/(1+cosθ)(1-cosθ)
(ii) cot2θ Solution
(i)
(ii)
8. If 3 cot A = 4, check whether 1-tan2 A/1+tan2 A = cos2 A - sin2 A or not.
Solution
9. If tan θ = a/b , find the value of cosθ + sinθ/cosθ - sinθ
Solution
10. If 3 tan θ = 4 , find the value of 4cosθ - sinθ/2cosθ + sinθ
11. If 3 cot θ = 2 , find the value of 4 sinθ - 3 cosθ/2 sinθ + 6 cosθ
Solution
13. If sec θ = 13/5, show that 2cos θ - 3cos θ/4sin θ - 9cos θ = 3.
Solution
14. If cos θ = 12/13, show that sin θ (1 - tan θ) = 35/156 .
Solution
15. If cot θ = 1/√3 , show that 1- cos2 θ/2 - sin2 θ = 3/5 .
Solution
16. If tan θ = 1/√7 cosec2 θ - sec2 θ/cosec2 θ + sec2 θ = 3/4 .
Solution
17. If Sec θ = 5/4 , find the value of sin θ - 2 cos θ/ tan θ - cot θ
Solution
Solution
19. If cos θ = 3/5 , find the value of sinθ - (1/tanθ)/2 tan θ
Solution
20. If sin θ = 3/5 , evaluate cosθ - (1/tanθ)/2 cot θ
Solution
Solution
22. If sin θ = a/b , find sec θ + tan θ in terms of a and b .
Solution
23. If 8 tan A = 15, find sin A - cos A .
24. If tan θ = 20/21, show that 1-sin θ + cos θ/1+ sin θ + cos θ = 3/7 .
Solution
25 . If cosec A = 2 find 1/Tan A + sin A/1+cos A
(i) The value of tan A is always less than 1.
(ii) Sec A = 12/5 for some value of angle A.
(iii) Cos A is the abbreviation used for the cosecant of angle A.
(iv) Sin θ = 4/3 for some angle θ .
Solution
29. If sin θ = 12/13 find sin2θ - cos2θ/2 sinθ cosθ × 1 tan2θ .
Solution
Solution
30. If cos θ = 5/13 find sin2θ - cos2θ/2 sinθ cosθ × 1 tan2θ .
31. If sec A = 5/4, verify that 3 sinA - 4 sin3A/4 cos3 A - 3 cosA = 3 tan A - tan3 A /1 - 3 tan2A .
Solution
Solution
32.
Solution
33. If sec A = 17/8 , verify that 3-4 sin2 A/4 cos2 A-3 = 3-tan2 A/1-3 tan2 A.
Solution
34.
Solution
35. If 3 cos θ - 4 sin θ = 2 cos θ + sin θ, find tan θ.
36. If ∠A and ∠P are acute angles such that tan A = P, then show that ∠A = ∠P.
Solution