MCQ Questions for Class 10 Maths: Ch 7 Coordinate Geometry
1. The distance between the point P(1, 4) and Q(4, 0) is
(a) 4
(b) 5
(c) 6
(d) 3√3
► (b) 5
(a) 4
(b) 5
(c) 6
(d) 3√3
► (b) 5
2. The area of the triangle whose vertices are A(1, 2), B(-2, 3) and C(-3, -4) is
(a) 11
(b) 22
(c) 33
(d) 21
► (a) 11
3. The coordinates of the centre of a circle passing through (1, 2), (3, – 4) and (5, – 6) is:
(a) (11, – 2)
(b) (-2, 11)
(c) (11, 2)
(d) (2, 11)
► (c) (11, 2)
4. The distance of the point (– 3, 4) from the origin is
(a) 25 units
(b) 1 unit
(c) 7 units
(d) 5 units
► (d) 5 units
5. The distance of the point P (2, 3) from the x-axis is
(a) 2
(b) 3
(c) 1
(d) 5
► (b) 3
6. The distance between the points (a, a) and (−√3a,√3a) is
(a) 3√2a units
(b) 2√2a units
(c) 2√2 units
(d) 2 units
► (b) 2√2a units
7. The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4) is
(a) (-4, -6)
(b) (2, 6)
(c) (-4, 2)
(d) (4, 2)
► (c) (-4, 2)
8. The area of the triangle formed by joining the mid-points of the sides of the triangle, whose vertices are (0, -1), (2, 1) and (0, 3) is
(a) 4
(b) 2
(c) 3
(d) 1
► (d) 1
9. The ordinate of a point is twice its abscissa. If its distance from the point (4,3) is √10, then the coordinates of the point are
(a) (1,2) or (3,6)
(b) (1,2) or (3,5)
(c) (2,1) or (3,6)
(d) (2,1) or (6,3)
► (a) (1,2) or (3,6)
10. If (a, 0) , (0, b) and (x, y) are collinear, then
(a) ay + bx = ab
(b) ax + by = 1
(c) ax – by = ab
(d) ay – bx = 1
► (a) ay + bx = ab
11. The line 3x + y – 9 = 0 divides the line joining the points (1, 3) and (2, 7) internally in the ratio
(a) 3 : 4
(b) 3 : 2
(c) 2 : 3
(d) 4 : 3
► (a) 3 : 4
12. If (a/3, 4) is the mid-point of the segment joining the points P(-6, 5) and R(-2, 3), then the value of ‘a’ is
(a) 12
(b) -6
(c) -12
(d) -4
► (c) -12
13. The points (1,1), (-2, 7) and (3, -3) are
(a) vertices of an equilateral triangle
(b) collinear
(c) vertices of an isosceles triangle
(d) none of these
► (b) collinear
14. If (3,0), (2,a), and (b,6) are the vertices of ABC whose centroid is (2,5), then the values of a and b are
(a) a = 3, b = -9
(b) a = 0, b = 2
(c) a = 1, b = 9
(d) a = 9, b = 1
► (d) a = 9, b = 1
15. The mid point of the line segment joining A(2a,4) and B(-2,3b) is M (1,2a + 1). The values of a and b are
(a) 2,3
(b) 1,1
(c) -2,-2
(d) 2,2
► (d) 2,2
16. The perimeter of a triangle with vertices (0, 4) (0, 0) and (3, 0) is:
(a) 15
(b) 12
(c) 8
(d) 10
► (b) 12
17. The horizontal and vertical lines drawn to determine the position of a point in a Cartesian plane are called
(a) Intersecting lines
(b) Transversals
(c) Perpendicular lines
(d) X-axis and Y-axis
► (d) X-axis and Y-axis
18. If A and B are the points (-6, 7) and (-1, -5) respectively, then the distance 2AB is equal to
(a) 26
(b) 169
(c) 13
(d) 238
► (a) 26
19. he ratio in which the x-axis divides the segment joining A(3,6) and B(12,-3) is
(a) 1:2
(b) -2:1
(c) 2:1
(d) -1:-1
► (c) 2:1
20. The distance between the points (– 1, – 5) and (– 6, 7) is
(a) 144 units
(b) 13 units
(c) 12 units
(d) 169 units
► (b) 13 units
21. The distance between the points (3,4) and (8,-6) is
(a) 2√5 units
(b) 3√5 units
(c) √5 units
(d) 5√5 units
► (d) 5√5 units
22. Origin divides the join of points (1,1) and (2,2) externally in the ratio
(a) 1:2
(b) 1:-2
(c) -1:-2
(d) -1:2
► (a) 1:2
23. The values of x and y, if the distance of the point (x,y) from (-3,0) as well as from (3,0) is 4 are
(a) x = 1, y = 7
(b) x = 2, y = 7
(c) x = 0, y = – √7
(d) x = 0, y = ± √7
► (d) x = 0, y = ± √7
24. The distance of the point P(6,-6) from the origin is equal to
(a) 3 √4 units
(b) 8 units
(c) 6 √2 units
(d) 3 units
► (c) 6 √2 units
25. The ratio in which (4,5) divides the line segment joining the points (2,3) and (7,8) is
(a) 2:3
(b) -3:2
(c) 3:2
(d) -2:3
► (a) 2:3
26. The points (3, 2), (0, 5), (-3, 2) and (0, -1) are the vertices of a quadrilateral. Which quadrilateral is it?
(a) Rectangle
(b) Square
(c) Parallelogram
(d) Rhombus
► (b) Square