Chapter 8 Introduction to Trigonometry Important Questions for CBSE Class 10 Maths Board Exams
Important Questions for Chapter 8 Introduction to Trigonometry Class 10 Maths
Introduction to Trigonometry Class 10 Maths Important Questions Very Short Answer (1 Mark)
Solution
We know that,
sec2θ – tan2θ = 1
⇒ (sec θ + tan θ) (sec θ – tan θ) = 1
⇒ (7) (sec θ – tan θ) = 1 …[sec θ + tan θ = 7]
∴ sec θ – tan θ = 1/7
2. Prove that
(1+tan A - sec A) (1+tan A + sec A) = 2 tan A
Solution
LHS = (1+tan A)2 - sec2 A
= 1+ tan2 A + 2 tan A - sec2 A
= sec2 A + 2 tan A - sec2 A
= 2 tan A = RHS
3. If tan A = cot B, then find the value of (A+B)
Solution
We have,
tan A = cot B
tan A = tan(90°-B)
A = 90° - B
Thus, A + B = 90°
4. If sinθ + sin2θ = 1 then prove that cos2θ + cos4θ = 1.
Solution
sinθ + sin2θ = 1
⇒ sinθ + (1-cos2θ) = 1
⇒ sinθ - cos2θ = 0
⇒ sinθ = cos2θ
Squaring both sides, we get
sin2θ = cos4θ
⇒ 1 - cos2θ = cos4θ
⇒ cos4θ + cos2θ = 1
5. If tan θ + cot θ = 5, find the value of tan2θ + cotθ.
Solution
tan θ + cot θ = 5 …[Given]
⇒ tan2θ + cot2θ + 2 tan θ cot θ = 25 …[Squaring both sides]
⇒ tan2θ + cot2θ + 2 = 25
∴ tan2θ + cot2θ = 23
6. If sec 2A = cosec (A – 27°) where 2A is an acute angle, find the measure of ∠A.
Solution
sec 2A = cosec (A – 27°)
⇒ cosec(90° – 2A) = cosec(A – 27°) …[∵ sec θ = cosec (90° – θ)]
⇒ 90° – 2A = A – 27°
⇒ 90° + 27° = 2A + A
⇒ 3A = 117°
∴ ∠A = 117°/3 = 39°
7. Evaluate: sin2 19° + sin271°.
Solution
sin219° + sin271°
= sin219° + sin2 (90° – 19°) …[∵ sin(90° – θ) = cos θ]
= sin2 19° + cos2 19° = 1 …[∵ sin2 θ + cos2 θ = 1]
8. In a triangle ABC, write cos(B+C/2) in terms of angle A.
Solution
In a triangle,A+B+C = 180°
B+C = 180° - A
Solution
sin241° + sin249°
= sin2(90°-49°) + sin249°
= cos249° + sin249°
= 1
11. If tan A = cot B, prove that A + B = 90°.
Solution
tan A = cot B
∴ tan A = tan (90° − B)
⇒ A = 90° − B
⇒ A + B = 90°
12. Express sin 67° + cos 75° in terms of ratios of angles between 0° and 45°.
Solution
∵ 67° = 90° − 23° and 75° = 90° − 15°
∴ sin 67° + cos 75°
= sin (90° − 23°) + cos (90° − 15°)
= cos 23° + sin 15°
13. What is the value of sinθ. cos(90° - θ) + cosθ . sin(90° - θ)?
Solution
sinθ ·cos(90° − θ) + cosθ · sin(90° − θ)
= sinθ · sinθ + cosθ · cosθ [∵ cos(90° − θ) = sinθ , sin(90° − θ) = cos θ]
= sin2 θ + cos2 θ
= 1
14. If tan θ = cot (30° + θ ), find the value of θ .
Solution
We have,
tan θ = cot (30° + θ)
= tan [90° − (30° + θ)]
= tan [90° − 30° − θ]
= tan (60° − θ)
⇒ θ = 60° − θ
⇒ θ + θ = 60°
⇒ 2θ = 60°
⇒ θ = 60°/2
⇒ θ = 30°
15. If sin 3θ = cos (θ - 6)° and 3θ and (θ - 6)° are acute angles, find the value of θ.
Solution
We have,
sin3θ = cos(θ − 6)° = sin[90°−(θ − 6)°] ∵ [sin (90° − θ) = cos θ]
⇒ 3θ = 90° − (θ − 6)°
⇒ 3θ = 90° − θ + 6°
⇒ 3θ + θ = 96°
⇒ 4θ = 96°/4
⇒ θ = 24°
16. Show that: tan 10° tan 15° tan 75° tan 80° = 1
Solution
We have,
L.H.S. = tan 10° tan 15° tan 75° tan 80°
= tan (90° − 80°) tan 15° tan (90° − 15°) tan 80°
= cot 80° tan 15 cot 15° tan 80°
= (cot 80° × tan 80°) × (tan 15° × cot 15°)
= 1× 1
= 1 = R.H.S.
Introduction to Trigonometry Class 10 Maths Important Questions Short Answer-I (2 Marks)
Solution
tan4θ + tan2θ = tan2θ (1+ tan2θ)
= tan2θ × sec2θ
= (sec2θ - 1) sec2θ
= sec4θ - sec2θ
21. Find the value of (sin233° + sin257°)
Solution
sin233° + sin257°
⇒ sin233° + sin2( 90° - 33°)
⇒ sin233° + cos233 [Using sin(90° - θ) = cos θ]
⇒ 1 [Using sin2θ + cos2 θ = 1]
22. If ∆ABC is right angled at B, what is the value of sin (A + C).
Solution
∠B = 90° …[Given]
∠A + ∠B + ∠C = 180° …[Angle sum property of a ∆]
⇒ ∠A + ∠C + 90° = 180°
⇒ ∠A + ∠C = 90°
∴ sin (A + C) = sin 90° = 1 …(taking sin both side)
23. If tan θ = a/x, find the value of x/√a2+x2
Solution
Solution
L.H.S. = x2 – y2
= (p sec θ + q tan θ)2 – (p tan θ + q sec θ)2
= p2 sec2θ + q2 tan2θ + 2 pq secθ tanθ - (p2 tan2θ + q2 sec2θ + 2pq secθ tanθ)
= p2 sec2θ + 2 tan2θ + 2pq secθ tanθ – p2 tan2θ – q2sec2θ – 2pq secθ tanθ
= p2(sec2θ – tan2θ) – q2(sec2θ – tan2θ)
= p2 – q2 …[sec2 θ – tan2 θ = 1]
= R.H.S.
25. If x = a cos θ – b sin θ and y = a sin θ + b cos θ, then prove that a2 + b2 = x2 + y2.
Solution
R.H.S. = x2 + y2
= (a cos θ – b sin θ)2 + (a sin θ + b cos θ)2
= a2cos2θ + b2 sin2θ – 2ab cosθ sinθ + a2 sin2θ + b2 cos2θ + 2ab sinθ cosθ
= a2(cos2 θ + sin2θ) + b2 (sin2 θ + cos2 θ)
= a2 + b2 = L.H.S. …[∵ cos2 θ + sin2 θ = 1]
Solution
cot 75° + cosec 75°
= cot(90° – 15°) + cosec(90° – 15°)
= tan 15° + sec 15° …[cot(90°-A) = tan A]
= cosec(90° – A) = sec A
27. If cos (A + B) = 0 and sin (A – B) = 3, then find the value of A and B where A and B are acute angles.
Solution
Putting the value of B in (i), we get
⇒ A = 30° + 30° = 60°
∴ A = 60°, B = 30°
28. If sin (A + 2B) = √3/2 and cos (A + 4B) = 0, A > B, and A + 4B ≤ 90° then find A and B.
Solution
sin (A + 2B) = √3/2
⇒ sin(A + 2B) = sin 60°
Hence, A + 2B = 60° ...(i)
Also, we have
cos(A + 4B) = 0
⇒ cos(A + 4B) = cos 90°
⇒ A + 4B = 90° ...(ii)
Subtracting (ii) from (i), we have
-2B = - 30°
⇒ B = 15°
Put B = 15° in eq. (i), we have
A + 2(15°) = 60°
⇒ A + 30° = 60°
⇒ A = 30°
Introduction to Trigonometry Class 10 Maths Important Questions Short Answer-II (3 Marks)
29. Prove that:
tanθ/1-tanθ - cotθ/1-cotθ = cosθ+sinθ/cosθ-sinθ
Solution
Solution
cos x = cos 40° sin 50° + sin 40° cos 50°
⇒ cos x = cos 40° sin(90° – 40°) + sin 40°.cos(90° – 40°)
⇒ cos x = cos2 40° + sin2 40°
⇒ cos x = 1 …[∵ cos2 A + sin2 A = 1]
⇒ cos x = cos 0°
⇒ x = 0°