Class 12 Maths NCERT Solutions for Chapter 7 Integrals Exercise 7.2
![Class 12 Maths NCERT Solutions for Chapter 7 Integrals Exercise 7.2 Class 12 Maths NCERT Solutions for Chapter 7 Integrals Exercise 7.2](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEis1JzS8ZBcQigPxlVIxJfHYsqXhmJsoZckOvCbvVXmAulDFD26hxoKKHS96uX7lRVJDOErI6S0gLU9o-SPddAMRwQpmFf5dynK42stz41oZqkKHHXYQ6QQcNXnlfTUbARu00muik4MSY6Z6fLkq_R6f6L3EsXT7YCOzE1X69MNiiO5HG2ztomOe5Rq/w657-h310-rw/cbse-class-12-maths-ncert-solutions-chapter-7-exercise-7-2.jpg)
Integrals Exercise 7.2 Solutions
1. Integrate the functions 2x/(1 + x2 ).
Solution
Let 1 + x2 = t
2x dx = dt
= log |t| + C
= log|1 + x2 | + C
= log(1 + x2 ) + C
2. Integrate the functions (log x)2 /x
Solution
Let log |x| = t
(1/x) dx = dt
3. Integrate the functions 1/(x + x log x)
Solution
Let 1 + log x = t
(1/x) dx = dt
(1/x) dx = dt
= log |t| + C
= log |1 + log x| + C
4. Integrate the functions sin x ⋅ sin (cos x) .
Solution
Let cos x = t
⇒ - sin x dx = dt
⇒ ∫ sin x . sin(cos x) dx = - ∫sin t dt
= - [-cos t] + C
= cos t + C
= cos (cos x) + C
⇒ - sin x dx = dt
⇒ ∫ sin x . sin(cos x) dx = - ∫sin t dt
= - [-cos t] + C
= cos t + C
= cos (cos x) + C
5. Integrate the functions sin (ax + b) cos (ax + b)
Solution
sin (ax + b) cos (ax + b)
=![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjfkHL9qr5H_pOSdZ6pUmNNmgUQ_YWItnEsvCwjLs8EOVjqFlkxrBYWBFhOZWFL03MtoKqv4mds55g56SAZxX0oupHJ0-vYcO5auT--jr6lFOxEONrKZAXIp-xQwUdov7e-xgvrOqzeoIPnWy-29hRgofl4NKxHUh3eUqdZGgd_bjuc-YHG1sc-2JsH/w278-h45-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%205.JPG)
Let 2(ax + b) = t
2adx = dt
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjck_vj-zVybrO6mSgCUP0VnNebx26f05qIibzMoF88qY5LULYO1-woM0UZRQyoSJXrMIOY90iKXbF_sQJGHgvSDDCfeCQc1yTuYcl9Ovt4Lr89UuuGNdEMZK0zvjb6ksSmZDFdi0l01yf-qUhSO3kVtP-Q6MCNjhrHMmHwawVM34olEfyxnaGNEhQ3/w230-h138-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%206.JPG)
=
Let 2(ax + b) = t
2adx = dt
6. Integrate the functions √(ax + b)
Solution
Let ax + b = t
⇒ ad x = dt
∴ dx = (1/a) dt
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjEN0H7E0OaWwqnSiAUl1ur-LbQSUfGquK8SWSyU8njyZnNpGVEsicGs3pilw9z5JSIeBcF3V8GOc7fHmMTWZ5zImShPp1HJQgQpJg4ygqOCM9VK9VkLxRFKCs-1fJ1jMbW7awVGTDJGdLHAuxF_TGYQcm6Sp2uzElRMQM1nrLFTmE648czA3F4-fXp/w184-h178-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%207.JPG)
⇒ ad x = dt
∴ dx = (1/a) dt
7. Integrate the functions x√(x + 2)
Solution
Let (x + 2) = t
dx = dt
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEioA9WL1jYaGc2uI4qYGRtOANZTLgQLTFPSYsAr76KFDkDQzlllESgT3yp8eXLxFuWpLsMIInk2XqibbrgXIcYvAuB_SU6q0uuwdgYrDi4Sfg_KVqFtotWW-vjoKTKMtU1jMRYqcoVc0LR3mH-obyRVELUOHW_G3q6YOcezb0TSDgajlO8tWcHcdpnd/w207-h321-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%208.JPG)
dx = dt
8. Integrate the functions x√(1 + 2x2 )
Solution
Let 1 + 2x2 = t
4x dx = dt
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgGaNRROTfL5VpnBGCgy2QwzicH6WGIcxIoeRzlzcF9bddTP3ek6laPcQXvma_Yw_EW_P36NIC5Mq6CqXEi2DMMZGCFDprIbOe1bhLkNKSA8jrCwLfLhfqcz0-fYIhTJKPoXzwBi8TC2YQxmlTN4XgdDd5lvLD2jm0DL1SAFT-DaQzIiIQZbDcFX-3h/w179-h238-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%209.JPG)
4x dx = dt
9. Integrate the functions (4x + 2) √(x2 + x + 1)
Solution
Let x2 + x + 1 = t
(2x + 1)dx = dt
(2x + 1)dx = dt
10. Integrate the functions 1/(x - √x) .
Solution
11. Integrate the functions x/√(x + 4) , x > 0
Solution
Let x + 4 = t
dx = dt
dx = dt
12. Integrate the functions (x3 - 1)1/3 x5
Solution
Let x3 - 1 = t
⇒ 3x2 dx = dt
⇒ 3x2 dx = dt
13. Integrate the functions x2/(2 + 3x3)3
Solution
Let 2 + 3x3 = t
⇒ 9x2 dx = dt
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhGUExoub_OEroIj0py-X2I6speN8Ua6CxTuok7swhuWwaj1xE-jvFgWsjX3DgnA8tMbzi1Rz0tcwZyxClry_FKZ-CgCckKaDNlwDmjlULlfqhePR3--F_hWkwQZtf4twgGrBHe2KUPej4I4vztAn1DTguGNYE27aRl5c3grxKgScd_IWOdhr8lfAmt/w183-h216-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2014.JPG)
⇒ 9x2 dx = dt
14. Integrate the functions 1/x(log x)m, x > 0
Solution
Let log x = t
Solution
Let 9 - 4x2 = t
-8x dx = dt
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgQc5FtNVDhqTlB9DnqevqkRynol48RXeFqVn9D-lRN0C0lqMuqoGNFL9P6Nolc8Hq-zZ6th2SZcfTKpzFMQuRwdUS_pjuOeYRwuBq7VykqihxS0PacHDwws73kW2N3CgwdbG6jvmCnSUIpTWbqqNShxvboNNwdcnASjuEcafEdn382xG1m211bG0Md/w249-h133-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2016.JPG)
-8x dx = dt
16. Integrate the functions e2x+3
Solution
Let 2x + 3 = t
2dx = dt
2dx = dt
17. Integrate the functions x/ex2
Solution
Let x2 = t
2x dx = dt
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgV6PSG46_0guhMx8x8K-TkJHVZ_AeIEJrZktYhb1yoZ-i44uA-SMJIfg6vaGUESZCxwYZTGez32tVQTvypjGkJcfw4Xh3j7fmc4knUEkkhcaK48r8y5IRx-Cm8Q6gW-pF0Bawgx75tXh2norvBq7_fRCeCVOXJz53cq-XJ308IBs7wYvTPabVjiRNZ/w146-h261-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2018.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiyITyNAq9hpcHHthqLw8dkv8O4-OQSqgX-BtXGZbZAnm015GALmHsT-uYnFtuedRb6vFpZMGiYfOjyLgXeBzu7rsow8tmRiV_VIXWX4Zf1ZWEds1ipBO-vOFIkCZTy0ZSbM12TIH3peOb0Qm9yCqajDw-N7uvNXP3ZfukqM0M82BWFY3LMc9tyd5Dc/w162-h106-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2020.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEha3ucyjLQP-yhofVfviBI5mLeEfK3CX6kP7c4f4rSwwveUaWbPA97vNxFA6KqZFn1FizTBeFow5MewkVgxbCUTuvyCfg513sDsxcFWGSzi8swp0WIqlpmQaC0giNzWWA11Mj0e9AGRIJAIlocYKbk1Rg9wf1ewc2iWdrprevGEgKBjwV_yltMJl-0L/w199-h174-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2021.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj-y9BPOPPM6BPuqMotzI__6bMfCZIJQzTrAC7YYhCo_kbQnhkEVegcUTWgE5Qe3BgONxs11LXdeDJeHZgIODl9hAwixczcaYoVe4xbg0Wiy5RP77LdmKazzmh5E6thK2-lq07SVZKJnuxxiegIKl_RUB_bVa0ozZWiI7nD6s4oobT3sSwvRP-It3-N/w180-h203-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2022.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhq6MpBFYR3gByti_Jfj-txsNlzt-J5fHJoll8ebUkoFFDVC0maDVERwqDVEpRx8OLrhOM5LZZ60PO_4wUygc9-obDQkG3iYZ7aFGz_dn7ldNHyvJdViM6FTtH3-CpnFv-a1XkyPWodAfSTn-CaDBPIIs3u-z8K1q63TePP3Kz68kIkAbXkfy2yBQ_O/s1600-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2023.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiGdpLndtiB3sndc84RO4PikV8KBFbPw7NUtxN0eRxVlA5EHJV3EfzHRqcPzNlFBi4-HG5-tpBwfEVYF5DCtlllhy9M9ydOFnJYQXL-6M2lkJQASbPhKpBmVH9DdPlgPbZ2ewbnb7d07z43KqLjQJzSK5aGfEdLoPfsgRev6q4GaQreXAw2J3-OvTi-/s1600-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2024.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhkUkfNqQr4fXTkzTgcQCiFfx0YItHcI-juDOLizSm-dizZwhOfcMBGv0aOyulwXLeYzCKKSUGSpyFx2d-daiWlJRt54uEWyDqFZ7KXJ4lj1csijn4N9gYu9_2ABT4KfXSGTdF4je78wFKxFYI5b9nbM0VnUHqjmY6tseAqoxUJlTN7_LrS5IRwd26L/s1600-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2026.JPG)
Let 3 cos x + 2 sin x = t
(-3 sin x + 2cos x) dx = dt
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEix-QuzblFvZciQbVGKcvI5gW4xEP11qYTxSePbMOIEBGnjLQf5aayx2WLti1BOMDzBQWP1COVeqWzXuatHnqWPoHojiz-AisUCYZt6Bc2AAe9zOYHlpiwlhtmMFRFf-dbSZGAwp35ETA5oTWkeQ8yTUQRfnnDhtov-udCegt8Sekn20CgcPLYfaA7R/w188-h176-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2027.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiwLswM10bihxBX_FLIA--l5I_XeohNdAU7eUh0xqqlqyLLR-A05n0YLTvTzT0vztMNKA29TxMsIX0Q5QAiTYnxutk8edkE6MuBUR6X4D0cc_zIMXv-m3KbzKsCCpEOSnJZWlx6InxFXdEOS9gsriOP_Nb0T4wmPgvxFGoqsV6bvQfQ_nshsYEsGxUN/w208-h51-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2028.JPG)
Let (1 - tan x) = t
⇒ - sec2 x dx = dt
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjnL6Ori5VCG207zxlLxb4tZgTlw6Fmwtj20qzKsPAil7yabmwYTOXG9YmbCYntExtbZQ7RevOUhmZRc9D83saWlA3WkelZRRw-vIKODlID9ksD0S6et7P4m1hlxSl_ZxwBale8_u1Xp42JmGrmYaNQLFCf1Vy8xyNmA4RvjtTsPzDJEFHTAAKeQUhr/w184-h175-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2029.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhnEyopjXjlhm56evXoWcMkaDz9iuLrNB7BZ-UAEtdmRFj6wQnOZ8mFcfVuX0f5MkKF-VIM-IHiPcnuEyVEpuBswd5wKLoFLzIxExDbxiUeSd97uJGXWd3BkzjR89vh_97FxA1wJNxr_wojKT5CxDPJDCI-XoIM0LIqS4fZ4Rfcs1S7KJLAXma09jTF/s1600-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2030.JPG)
= 2 sin t + C
= 2 sin √x + C
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg4xD2GN664hTDoYpY0MG9AQZNDVxRHX0k_7vGLbYEJucVdc6rV4N7Nxxv9kvBsvg_gHMZucAbt9PzR94PrBtX6SEgGeHPf2-yDzy9n6QLGB7UiODs_-5B1E11_Ez5UuoJzVdxd_KbkcZvoHqYhuTjBI3l-jNW5pSiwR-zOcPqKdwn1koaQxFElSC94/w114-h175-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2031.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhy0Gkqk1zBkDCqDhiED3BowZXgxdhte3NDw5aN0clghd7FrtUjmH_ffxWWuQgCZmNNfmZg4JK_bh8WXwrj5fD2eNvPuECPxMbAXA1sjI9YkuXGoynkoNJwkenkV7xCKmnEW2PCGxoTd2bhHy8QtKNrbiyAzhawEJQE6Es7pCfIYN-nYAhUqi6aBm8C/w172-h184-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2032.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg7TEKPFExqlf_heIUZl7W-eaPT5oqoggUCbmbG7WZ-kJUdVVKu-oXPe1RDpMx2oGGDXe_3FIMMANRxFIcqO-i8kyrqyi9FeDkGILLKrqKOHh715Rsu5UhGGdVQ_AEjS2TBYaMZUn0vS4--r1KPQcDIx75wYX_FDImPKXKJakjOTMoM3TyedivplYZU/w131-h89-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2033.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjaxD01R4AIxDcq3Yh0btbRVw3RLj94NDRjXfDjYicJWgNiusSWuF0MQHhpFFy4WBXS1P7suIln2vFx_R3neYmr3akWyxrVdaOwSliBYZ-f-CCKG323Ui914EBBt3E0k4vdESROe3JknfSbv3y3djOMHQn0-YkzLqeUmj9_sTd_3EBH9oRt9GTkTAfu/w177-h46-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2034.JPG)
= - |log|t| + C
= - log|1 + cos x| + C
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgWHRPeymt5VRufphMajJVkpcuN7D3fSdKDTwpGInJGnKVf3xeILkMsdrdCEd1jTeCRNiJHQ_MFjviF4FLJjFfyuxz2EJQjo65sKVDRkqobhGWJo40B70Iakegysoz2ThjFPFy0VXr0iqJtCjGHMDb5aoIlX23vx26mkX8-GM3qrXzeMcqlNmXl6B91/w196-h180-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2035.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhIHRQH2QaV9kyjoI-o-Ma4nHoNedTHXbLYFuUw924zMmsitlIg0J4Q_vmrdpbk08q1-lBrRey0d6hyPvcjl0tEqf_CSwu5pYxw7rqMbq1KK7okXIUPClx6J6kLtZMA71k_U-pTezkif4BlCnRCMEJBP2-av9CFV0FdE-hh9qIK2izcXGEOcT4rwt3G/w296-h353-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2036.JPG)
Let sin x + cos x = t then (cos x - sin x) dx = dt
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh2VXvyZQvY-fHmphYOw_ZQkXVfqpdNZ_-0J8VY82J2HovuxMiA0VU2Eqo1OAGAg0bP809HZH9R7tuJmUcaW9x8ht6eWAU5GttbH2Sz7gB2G-6nZ9H98NUz2gmqaMWwrDhhsYoEQFJb5OFnGMBhdZZ-arrCQRvqpf0HACrYwSZ_odRo1kGmJACe7k59/w217-h133-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2037.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjYYGoNQ-XkkY7JmuSWfRoWbubaFtShlwpxokVekEA-2V9jkPZKyOjpAQo0Tkqj4z0KeA4EQ0nbAbuqIib47MAW5FpXCZE6LPLgP_6HbCMp6sUHyF6oxFO8RismhmK-W6y1RFiz_Vc7oArb6McoHsnsnvyTNGoULKJkQF18QwbxYJzkAiiN7G2VOZlX/w308-h373-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2038.JPG)
Put cos x - sin x = t then (- sin x - cos x) dx = dt
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjG4T7MisuqbOiaLOl-YpohbRwA0KjuLJxts18vi9VZ0MLB5G_kFXTkcr4CTASWy3LbJpowX4x9eajdiQuFQrmk8GT_jKRk6LAjaLNTzkCeK9M_Ej-Q3qHUUp_oOXIjk8IP3ZUz1PR9Vl1m7IEBNbgeeePmDZJolYM7Fzu6yMj9ko3TDNxNNUdZ2Jpm/w208-h137-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2039.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgcdsvR4GxBSTpxMu-E1HTRB10RM9eXOtasRa4n6GO9JNu0IX9z0yqYi9Io1WMc4ao3lWVR8QDQeL776SgUcI86fUoIoKo1L0HSI10D31HsRUKwoPcXd8ebXXcK_jXk3GSereE3LTktvbganOGtnBMnJFBrQCKwaXYLRhXog469a8fIm_F2fvlt-g3u/w209-h328-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2040.JPG)
2x dx = dt
18. Integrate the functions etan-1 x /(1 + x2 )
Solution
Let tan-1 x = t
19. Integrate the functions (e2x - 1)/(e2x + 1)
Solution
(e2x - 1)/(e2x + 1)
Dividing numerator and denominator by ex , we obtain
Dividing numerator and denominator by ex , we obtain
Let ex + e-x = t
⇒ (ex - e-x )dx = dt
⇒ (ex - e-x )dx = dt
20. Integrate the functions (e2x - e-2x )/(e2x + e-2x )
Solution
Let e2x + e-2x = t
⇒ (2e2x - 2e-2x)dx = dt
⇒ 2(e2x - e-2x) dx = dt
⇒ (2e2x - 2e-2x)dx = dt
⇒ 2(e2x - e-2x) dx = dt
21. Integrate the functions tan2 (2x - 3)
Solution
tan2 (2x - 3) = sec2 (2x - 3) - 1
Let 2x - 3 = t
⇒ 2dx = dt
⇒ ∫tan2 (2x - 3)dx
Let 2x - 3 = t
⇒ 2dx = dt
⇒ ∫tan2 (2x - 3)dx
22. Integrate the functions sec2 (7 - 4x)
Solution
Let 7 - 4x = t
-4dx = dt
∴ ∫sec2 (7 - 4x)dx
-4dx = dt
∴ ∫sec2 (7 - 4x)dx
23. Integrate the functions (sin-1 x)/√(1 - x2 )
Solution
Let sin-1 x = t
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgpKdoIstWqElL0hqZwGIxO9X_e3lfU3fTeEJGdgROadbg4HMPWJajRUpy6EJWoZath1E8g0ys6-WeKAOiwuS43IwoMqM-9d8KPYsL2BY6VxBN3ZnmOKmUbiUbRKhyWxbQ1nc-fmSnrLWTEAECUdeCXqRBiMZLdNUOzLAKXZyVqubAzpXVIT4BVnUy6/s1600-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2025.JPG)
24. Integrate the functions (2 cos x - 3 sin x)/(6 cos x + 4 sin x)
Solution
Let 3 cos x + 2 sin x = t
(-3 sin x + 2cos x) dx = dt
25. Integrate the functions 1/[cos23 x(1 - tan x)2 ]
Solution
Let (1 - tan x) = t
⇒ - sec2 x dx = dt
26. Integrate the functions cos√x/√x
Solution
Let √x = t
= 2 sin t + C
= 2 sin √x + C
27. Integrate the functions √(sin 2x) cos 2x
Solution
Let sin 2x = t
2 cos 2x dx = dt
⇒ ∫√(sin 2x) cos 2x dx = (1/2)∫√t dt
2 cos 2x dx = dt
⇒ ∫√(sin 2x) cos 2x dx = (1/2)∫√t dt
28. Integrate the functions cos x/√(1 + sin x) .
Solution
Let 1 + sin x = t
⇒ cos x dx = dt
⇒ cos x dx = dt
29. Integrate the function cot x log sin x
Solution
Let log sin x = t
⇒ (1/sin x) . cos x dx = dt
∴ cot x dx = dt
∫ cot x log sin x dx = ∫t dt
⇒ (1/sin x) . cos x dx = dt
∴ cot x dx = dt
∫ cot x log sin x dx = ∫t dt
30. Integrate the functions sinx/(1 + cos x)
Solution
Let 1 + cos x = t
⇒ - sin x dx = dt
⇒ - sin x dx = dt
= - |log|t| + C
= - log|1 + cos x| + C
31. Integrate the functions in sin x/(1 + cos x)2
Solution
Let 1 + cos x = t
⇒ - sin x dx = dt
⇒ - sin x dx = dt
32. Integrate the functions in 1/(1 + cot x)
Solution
Let sin x + cos x = t then (cos x - sin x) dx = dt
33. Integrate the functions in 1/(1 - tan x)
Solution
Put cos x - sin x = t then (- sin x - cos x) dx = dt
34. Integrate the functions in √(tan x)/(sin x cos x) .
Solution
35. Integrate the functions in (1 + log x)2/x
Solution
Let 1 + log x = t
⇒ (1/x) dx = dt
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhmmIwKcUzbBuqDAAuhk9aKkolW3Ub8D8z_ktJ41INKDm7YFW82VGIpX8Vp9e2YB7xWNdRAd2wdFInzKzXZiBuLBkKzBR9XWZ4vc8zOz_1FkMEkkn3941b_ZpF9uJBVHkasp-i2posti67879zuSxQgjQJpuunvKjSly8AyFOvPOE-zBNqf1GA5o7DH/w184-h145-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2041.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjQtnn_JJ4HhVwj5YqQUk1tsq0yB1ReKSuGGCOyaK4aCZFcqiPE0fI1MxbT2tC1e8tIKH2Vw_H06nU-KM7KX4qLeTwkkjq4ewqE0Vj3dqPE_33094aiueSs5M_apHgMur5CPJxQ-tVMJJ5jfjCEOMMDariAFi6FNykpZteHTX9bWoQVKF5xWMj8RJwr/w401-h257-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2042.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjEUWd0Sl06SQAIhKWmUpgW4LmZIsVtwKGkmDY4jZLJuLh9SoyW6TxnrEMxjWlyGWroHnx5xLEwnOO-4-chgLESMVd0zGUqq4RhIdpW-n9E511-KRs40YDl-4AJea1kHq4eoMou0DgY1ctlyTQ5j7deVAuDiZUIyD0nYG5k9poBjSB5Y609uW8DLDLA/w415-h49-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2043.JPG)
Let tan-1 t = u
⇒ 1/(1 + t2) dt = du
From (1), we obtain
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj6E8cgkNaq7jQYW1z7stayocHwFKtDoDDb940wcui4gB5DDKhS6VE7F7fmHTj8FGQlR18NeBljZ6x3SBtAbCxx7kxyJ3efxLQ_M5_ppp-cdJ_5gEkdIIR9fvR2r4l0G9TkqeC9IOFrUq6QSq2OZvnkncp7zM2MkPOrVJjZ5WuYXqTD9jnR8Fnym6cS/w223-h192-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2044.JPG)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiDwNWlzo1n_Yjn5ICMr2Duj-Ed1AuUv-zG4xC6Rp-Unxh17iYceMQ-NU-Ar4YGl9RgrfztQUhVWBB_ih2_MwbMogXK34YcUrv9VwEBm000cKgFVmYGRHLNwz4hhBCGYx4ABCiRXDVlwfJAmGoLEG2dVpBoaAIj_Q7lembkgpICNfo6k89Er_EZ3gSi/w215-h167-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2046.JPG)
Hence, the correct answer is D.
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgfVsLeaqMnIy9wqRHMxaSWHHJmb6oCRoGij6-FC1ztI9Tbl-ne9ngHs74iiYFJK6S6hjvEWswymuMuBW3oA8-Ddgp2ZbpTQ3N_t6YGHvxtKmFt6AHlkrE83zRmFZJ2iO_okTMo7nl9CPYe4NxOJ0W7FynsI-et6x7f4bzVSli_g7H46uSxWHZWSxh2/w252-h239-rw/NCERT%20Solutions%20for%20Chapter%207%20Integrals%20Class%2012%20Maths%20Exercise%20-%207.2%20img%2047.JPG)
⇒ (1/x) dx = dt
36. Integrate the function in[(x + 1)(x + log x)2 /x
Solution
37. Integrate the function in x3 sin (tan-1 x4)/(1 + x8)
Solution
Let x4 = t
⇒ 4x3 dx = dt
⇒ 4x3 dx = dt
Let tan-1 t = u
⇒ 1/(1 + t2) dt = du
From (1), we obtain
38. Choose the correct answer int (10x9 + 10x loge 10)/ (x10 + 10x) dx equals
(A) 10x - x10 + C
(B) 10x + x10 + C
(C) (10x - x10) - 1 + C
(D) log (10x + x10) + C
(A) 10x - x10 + C
(B) 10x + x10 + C
(C) (10x - x10) - 1 + C
(D) log (10x + x10) + C
Solution
Let x10 + 10x = t
Hence, the correct answer is D.
39. Choose the correct answer ∫dx/(sin2 x cos2 x) equals
(A) tan x + cot x + C
(B) tan x - cot x + C
(C) tan x cot x + C
(D) tan x - cot 2x + C
(A) tan x + cot x + C
(B) tan x - cot x + C
(C) tan x cot x + C
(D) tan x - cot 2x + C
Solution
Hence, the correct answer is B.