Class 11 Maths NCERT Solutions for Chapter 3 Trigonometric Functions Exercise 3.3
Trigonometric Functions Exercise 3.3 Solutions
1. sin2 (π/6) + cos2 (π/3) – tan2 (π/4) = -1/2
Solution
L.H.S. = sin2 (π/6) + cos2 (π/3) – tan2 (π/4)
2. Prove that 2sin2 (π/6) + cosec2 (7π/6) cos2 (π/3) = 3/2
Solution
= 1 + 1 + 8 = 10
= R.H.S
(i) sin 75°
(ii) tan 15°
(i) sin 75° = sin (45° + 30°)
= sin 45° cos 30° + cos 45° sin 30°
[sin (x + y) = sin x cos y + cos x sin y]
= sin x cos x[tan x + cot x]
= 1 = R.H.S.
= cos(-x) = cos x = R.H.S.
= -2sin(3π/4) sin x
= -2sin(π - π/4) sin x
= -2 sin (π/4) sin x
= -2 × 1/√2 × sin x
= -√2 sin x
= R.H.S.
∴ L.H.S. = sin2 6x - sin2 4x
= (sin 6x + sin 4x)(sin 6x - sin 4x) =
= (2 sin 5x cos 5x) (2 sin x cos x)
= sin 10x sin 2x
= R.H.S.
∴ L.H.S. = cos2 2x – cos2 6x
= (cos 2x + cos 6x) (cos 2x – 6x)
= [2 cos 4x cos(-2x)][-2 sin 4x sin(-2x)]
= [2 cos 4x cos 2x] [–2 sin 4x (–sin 2x)]
= (2 sin 4x cos 4x) (2 sin 2x cos 2x)
= sin 8x sin 4x
= R.H.S.
= [sin 2x + sin 6x] + 2sin4x
[∵ sin A + sin B = 2sin (A + B)/2. cos(A - B)/2]
= 2 sin 4x cos (– 2x) + 2 sin 4x
= 2 sin 4x cos 2x + 2 sin 4x
= 2 sin 4x (cos 2x + 1)
= 2 sin 4x (2 cos2 x – 1 + 1)
= 2 sin 4x (2 cos2 x)
= 4cos2 x sin 4x
= R.H.S.
= 2 cos 4x cos x
R.H.S. = cot x(sin 5x - sin 3x)
= (cos x/sin x) [2 cos 4x sin x]
= 2 cos 4x. cos x
= L.H.S = R.H.S
cos A - cos B = -2 sin(A+B)/2 .sin(A-B)/2, sin A - sin B = 2 cos(A+B)/2 .sin(A-B)/2
sin A - sin B = 2cos(A+B)/2 .sin (A-B)/2, cos2A - sin2A = cos2A
= -2 ×(-sin x)
= 2sin x = R.H.S.
[∵ cos A + cos B = 2cos(A+B)/2 .cos(A-B)/2, sin A + sin B = 2sin(A+B)/2 .cos(A-B)/2]
L.H.S. = cot x cot 2x – cot 2x cot 3x – cot 3x cot x
= cot x cot 2x – cot 3x (cot 2x + cot x)
= cot x cot 2x – cot (2x + x) (cot 2x + cot x)
= cot x cot 2x - (cot 2x cot x - )
= 1 = R.H.S.
23. Prove that tan 4x = [4 tan x(1 - tan2 x)]/(1 - 6 tan2 x + tan4 x)
Solution
It is known that tan 2A = 2 tan A/(1 - tan2 A
∴ L.H.S = tan 4x = tan 2(2x)
24. Prove that cos 4x = 1 – 8sin2 x cos2 x
Solution
L.H.S. = cos 4x
= cos 2(2x)
= 1 – 2 sin2 2x [cos 2A = 1 – 2 sin2 A]
= 1 – 2(2 sin x cos x)2 [sin2A = 2sin A cosA]
= 1 – 8 sin2x cos2x
= R.H.S.
25. Prove that: cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Solution
L.H.S. = cos 6x
= cos 3(2x)
= 4 cos3 2x – 3 cos2x [cos 3A = 4 cos3 A – 3 cosA]
= 4 [(2 cos2 x – 1)3 – 3 (2 cos2 x – 1) [cos 2x = 2 cos2 x – 1]
= 4 [(2 cos2 x)3 – (1)3 – 3 (2 cos2 x)2 + 3 (2 cos2 x)] – 6cos2 x + 3
= 4 [8cos6x – 1 – 12 cos4x + 6 cos2x] – 6 cos2x + 3
= 32 cos6x – 4 – 48 cos4x + 24 cos2 x – 6 cos2x + 3
= 32 cos6x – 48 cos4x + 18 cos2x – 1
= R.H.S.