Class 11 Maths NCERT Solutions for Chapter 5 Complex Numbers and Quadratic Equations Exercise 5.2
Complex Numbers and Quadratic Equations Exercise 5.2 Solutions
1. Find the modulus and the argument of the complex number z = -1 - i√3
Solution
z = -1- i√3
Let r cos θ = -1 and r sin θ = -√3
On squaring and adding, we obtain
(r cos θ)2 + (r sin θ)2 = (-1)2 + (-√3)2
⇒ r2 (cos2 θ + sin2 θ) = 1 + 3
⇒ r2 = 4 [cos2 θ + sin2 θ = 1]
⇒ r = √4 = 2 [Conventionally, r > 0]
∴ Modulus = 2
∴ 2 cos θ = -1 and 2sin θ = - √3
⇒ cos θ = -1/2 and sin θ = -√3/2
Since both the values of sin θ and cos θ are negative and sin θ and cos θ are negative in III quadrant,
Argument = -(π - π/3) = -2π/3
Thus, the modulus and argument of the complex number -1 - √3 i are 2 and -2Ï€/3 respectively.
2. Find the modulus and the argument of the complex number z = -√3 + i
Solution
z = -√3 + i
Let r cos θ = -√3 and r sin θ = 1
On squaring and adding, we obtain
r2 cos2 θ + r2 sin2 θ = (-√3)2 + 12
⇒ r2 = 3 + 1 = 4 [cos2 θ + sin2 θ = 1]
⇒ r = √4 = 2 [Conventionally, r > 0]
∴ Modulus = 2
∴ 2 cos θ = -√3 and 2sin θ = 1
⇒ cosθ = -√3/2 and sinθ = 1/2
∴ θ = Ï€ - Ï€/6 = 5Ï€/6 [As θ lies in the II quadrant]
Thus, the modulus and argument of the complex number -√3 + i are 2 and 5Ï€/6 respectively.
3. Convert the given complex number in polar form : 1 - i
Solution
1 - i
Let r cos θ = 1 and r sin θ = -1
On squaring and adding, we obtain
r2 cos2 θ + r2 sin2 θ = 12 + (-1)2
⇒ r2 (cos2 θ + sin2 θ) = 1 + 1
⇒ r2 = 2
⇒ r = √2 [Conventionally, r > 0]
∴ √2 cos θ = 1 and √2 sin θ = -1
⇒ cos θ = 1/√2 and sinθ = -1/√2
∴ θ = -Ï€/4 [As θ lies in the IV quadrant]
∴ 1 - i = r cos θ + i r sinθ = √2 cos (-Ï€/4) + i√2sin(-Ï€/4) = √2[cos (-Ï€/4) + i sin(-Ï€/4) ] This is the required polar form.
4. Convert the given complex number in polar form : -1 +i
Solution
-1+ i
Let r cos θ = -1 and r sin θ = 1
On squaring and adding, we obtain
r2 cos2 θ + r2 sin2 θ = (-1)2 + 12
⇒ r2 (cos2 θ + sin2 θ) = 1 + 1
⇒ r2 = 2
⇒ r = √2 [Conventionally, r > 0]
∴ √2 cos θ = -1 and √2sin θ = 1
⇒ cos θ = -1/√2 and sinθ = 1/√2
∴ θ = Ï€ - Ï€/4 = 3Ï€/4 [As θ lies in the II quadrant]
It can be written,
∴ -1 + i = r cos θ + i r sinθ
=
This is the required polar form.
5. Convert the given complex number in polar form : -1 - i .
Solution
-1-i
Let r cos θ = -1 and r sin θ = -1
On squaring and adding, we obtain
r2 cos2 θ + r2 sin2 θ = (-1)2 + (-1)2
⇒ r2 (cos2 θ + sin2 θ) = 1 + 1
⇒ r2 = 2
⇒ r = √2 [Conventionally, r > 0]
∴ √2 cos θ = -1 and √2sin θ = -1
⇒ cos θ = -1/√2 and sinθ = -1/√2
∴ θ = -(Ï€ - Ï€/4) = -3Ï€/4 [As θ lies in the III quadrant]
∴ -1-i = r cos θ + i r sin θ = √2 cos (-3Ï€/4) + i√2 sin(-3Ï€/4) = √2[cos(-3Ï€/4) + i sin(-3Ï€/4)]
This is the required polar form.
6. Convert the given complex number in polar form: -3
Solution
-3
Let r cos c = -3 and r sin θ = 0
On squaring and adding we obtain
r2 cos2 θ + r2 sin2 θ = (-3)2
⇒ r2 (cos2 θ + sin2 θ) = 9
⇒ r2 = 9
⇒ r = √9 = 3 [Conventionally, r > 0]
∴ 3 cosθ = -3 and 3 sinθ = 0
⇒ cos θ= -1 and sinθ = 0
∴ θ = Ï€
∴ -3 = r cos θ + i r sin θ = 3 cos Ï€ + B sinÏ€ = 3(cos Ï€ + isin Ï€)
This is the required polar form.
7. Convert the given complex number in polar form : √3 + i
Solution
√3 + i
let r cos θ = √3 and r sin θ = 1
On squaring and adding, we obtain
r2 cos2 θ + r2 sin2 θ = (√3)2 + 12
⇒ r2 (cos2 θ + sin2 θ) = 3 + 1
⇒ r2 = 4
⇒ r = √4 = 2 [Conventionally, r > 0]
∴ 2 cosθ = √3 and 2sinθ = 1
⇒ cos θ = √3/2 and sinθ = 1/2
∴ θ = Ï€/6 [As θ lies n the I quadrant]
∴ √3 + i = r cos θ + i r sinθ = 2 cos (Ï€/6 ) + i 2 sin (Ï€/6) = 2[cos(Ï€/6) + i sin(Ï€/6)]
This is the required polar form.
8. Convert the given complex number in polar form : i
Solution
i
Let r cosθ = 0 and r sin θ = 1
On squaring and adding, we obtain
r2 cos2 θ + r2 sin2 θ = 02 + 12
⇒ r2 (cos2 θ + sin2 θ) = 1
⇒ r2 = 1
⇒ r = √1 = 1 [Conventionally, r > 0]
∴ cosθ = 0 and sinθ = 1
∴ θ = Ï€/2
∴ i = r cosθ + i r sin θ = cos (Ï€/2) + i sin (Ï€/2)
This is the required polar form.