Class 11 Maths NCERT Solutions for Chapter 13 Limits and Derivatives Exercise 13.2

Class 11 Maths NCERT Solutions for Chapter 13 Limits and Derivatives Exercise 13.2

Limits and Derivatives Exercise 13.2 Solutions

1. Find the derivative of x2 – 2 at x = 10.

Solution

Let f(x) = x2 – 2. Accordingly, 

Thus, the derivative of x2 – 2 at x = 10 is 20 .


2. Find the derivative of 99x at x = 100.

Solution

Let f(x) = 99x . Accordingly, 

Thus, the derivative of x at x = 1 is  1.


3. Find the derivative of x at x = 1.

Solution

Let f(x) = 99x, Accordingly,  

Thus, the derivative of 99x at x = 100 is 99.


4. Find the derivative of the following functions from first principle.
(i) x3 – 27
(ii) (x – 1) (x – 2) 
(iii) 1/x2 
(iv) (x + 1)/(x - 1)

Solution

(i) Let f(x) = x3 - 27, Accordingly, from the first principle,  


(ii) Let f(x) = (x - 1)/(x - 2)  Accordingly, from the first principle,  

= (2x + 0 - 3) 
= 2x - 3


(iii) Let f(x) = 1/x2, Accordingly, from the first principle,  


(iv) let f(x) = (x + 1)/(x - 1). Accordingly, from the first principle,  


5. For the function
f(x) = x100 /100 + x99 /99 + ....+ x2 /2 + x + 1
Prove that f '(1) = 100 f '(0)

Solution

The given function is  

At x = 0, 
f '(0) = 1 
At x = 1, 
f '(1) = 199 + 198 + ... + 1 +1 = [1 + 1 +....+ 1 + 1] 100 terms  = 1 × 100 = 100 
Thus, f '(1) = 100 × f1 (0)


6. Find the derivative of xn + axn-1 + a2 xn-2 + .....+ an-1 x + an for some fixed real number a 

Solution

Let f(x) = xn + axn-1 + a2 xn-2 + ......+ an-1 x + an  


7. For some constants a and b, find the derivative of
(i) (x – a) (x – b)
(ii) (ax2 + b)2 
(iii) (x- a)/(x - b)  

Solution

(i) Let f(x)  = (x - a)(x -b) 
⇒ f(x) = x2 - (a +b)x + ab 

f '(x) = 2x - (a + b) + 0 = 2x - a -b


(ii) Let f(x) = (ax2 + b2)
⇒ f(x) = a2 x4 + 2abx2 + b2 

f '(x) = a2(4x3) + 2ab (2x) + b2 (0) 
= 4a2 x3 + 4abx 
= 4ax(ax2 + b)



8. Find the derivative of  (xn - an )/(x-a) for some constant a. 

Solution


9. Find the derivative of
(i) 2x - 3/4
(ii) (5x3 + 3x - 1)(x - 1)
(iii) x-3 (5 + 3x)
(iv) x5 (3 - 6x-9)
(v) x-4 (3 - 4x-5)
(vi) 2/(x + 1) - x2/(3x - 1)
Solution

= 2 - 0 
= 2

(ii) Let f(x) = (5x3 + 3x - 1)(x- 1) 
By Leibnitz product rule,  

= (5x3 + 3x - 1)(1) + (x - 1) (5.3x2 + 3 - 0) 
- (5x3 + 3x - 1) + (x - 1)(15x3 + 3) 
= 5x3 + 3x - 1 + 15x3 + 3x - 15x2 - 3 
= 20x3 - 15x2 + 6x - 4

(iii) Let f(x) = x-3 (5 + 3x)
By Leibnitz product rule, 

(iv) Let f(x) = x5 (3 - 6x-9
By Leibnitz product rule,  

= x5 [0 - 6(-9)x-9-1] + (3 - 6x-9)(5x4
= x5 (54x-10) + 15x4 - 30x-5
= 54x-5 + 15x4 - 30x-5
= 24x-5 + 15x4
= 15x4 + 24/x5

(v) Let f(x) = x-4 (3 - 4x-5
By Leibnitz product rule,  

= x-4 [0 - 4(-5)x-5-1] + (3 - 4x-5)(-4)x-4-1 
= x-4 (20x-6)+ (3 -4x-5)(-4x-5
= 20x-10 - 12x-5 + 16x-10 
= 36x-10 - 12x-5 
= -12/x5 + 36/x10 


10. Find the derivative of cos x from first principle. 
Solution
Let f(x) = cos x, Accordingly, from the first principle,  

= - sin x
∴ f '(x) = -sin x

11. Find the derivative of the following functions:
(i) sin x cos x 
(ii) sec x 
(iii) 5 sec x + 4 cos x
(iv) cosec x 
(v) 3cot x + 5cosec x
(vi) 5sin x – 6cos x + 7
(vii) 2tan x – 7sec x 
Solution
(i) Let f(x) = sin x cos x. Accordingly, from the first principle,  

= cos (2x + 0).1 
= cos 2x

(ii) Let f(x) = sec x. Accordingly, from the first principle,  

= sec x tan x

(iii) Let f(x) = 5 sec x + 4cos x. Accordingly, from the first principle,  

(iv) Let f(x) = cosec x, Accordingly, from the first principle,  

(v) Let f(x) = 3cot x + 5cosec x. Accordingly, from the first principle,  

= - cosecx cot x  ...(3)
From (1), (2) and (3), we obtain  
f '(x) = -3cosec2 x - 5cosec x cot x

(vi) Let f(x) = 5sin x - 6 cosx + 7. Accordingly, from the first principle,  

= 5cosx. 1 -6[(-cos x).(0) - sinx. 1] 
= 5 cos x + 6 sin x

(vii) Let f(x) = 2 tan x - 7 sec x. Accordingly, from the first principle,  
Previous Post Next Post