Class 9 Maths Chapter 2 Polynomials Exercise 2.5 NCERT Solutions in Hindi Medium
बहुपद Ganit NCERT Solutions in Hindi Medium Exercise 2.5
प्रश्न 1. उपयुक्त सर्वसमिकाओं को प्रयोग करके निम्नलिखित गुणनफल ज्ञात कीजिए:
(i) (x + 4) (x + 10)
(ii) (x + 8) (x – 10)
(iii) (3x + 4) (3x – 5)
(iv) (y2 + 3/2) (y2 – 3/2)
(v) (3 – 2x) (3 + 2x)
Solution
(i) (x + 4) (x + 10)
सर्वसमिका (x + a) (x + b) = x2 + (a + b)x + ab का प्रयोग करने पर,
(x + 4) (x + 10) = x2 + (4 + 10)x + (4)(10)
= x2 + 14x + 40
(ii) (x + 8) (x – 10)
सर्वसमिका (x + a) (x + b) = x2 + (a + b)x + ab का प्रयोग करने पर
(x + 8) (x – 10) = x2 + [8 + (-10)]x + (8)(-10)
= x2 - 2x - 80
(iii) (3x + 4) (3x – 5)
सर्वसमिका (x + a) (x + b) = x2 + (a + b)x + ab का प्रयोग करने पर
(3x + 4) (3x – 5) = (3x)2 + [4 + (-5)]3x + (4)(-5)
= 9x2 - 3x - 20
(iv) (y2 + 3/2) (y2 – 3/2)
सर्वसमिका (x + y) (x - y) = x2 - y2 का प्रयोग करने पर
(v) (3 – 2x) (3 + 2x)
सर्वसमिका (x + y) (x - y) = x2 - y2 का प्रयोग करने पर
(3 – 2x) (3 + 2x) = (3)2 - (2x)2
= 9 - 4x2
प्रश्न 2. सीधे गुना किये बिना निम्नलिखित गुणनफलों के मान ज्ञात कीजिए :
(i) 103 × 107
(ii) 95 × 96
(iii) 104 × 96
Solution
(i) 103 × 107 = (100 + 3) (100 + 7)
सर्वसमिका (x + a) (x + b) = x2 + (a + b)x + ab का प्रयोग करने पर
(100 + 3) (100 + 7)
= (100)2 + (3 + 7)100 + 3×7
=10000 + 1000 + 21
= 11021
(ii) 95 × 96 = (90 + 5) (90 + 6)
सर्वसमिका (x + a) (x + b) = x2 + (a + b)x + ab का प्रयोग करने पर
(90 + 5) (90 + 6)
= (90)2 + 90(5 + 6) + 5×6
=8100 + 990 + 30
= 9120
(iii) 104 × 96 = (100 + 4) (100 - 4)
सर्वसमिका (x + y) (x - y) = x2 - y2 का प्रयोग करने पर
(100)2 - (4)2
=10000 - 16
= 9984
प्रश्न 3. उपयुक्त सर्वसमिकाओं को प्रयोग करके निम्नलिखित का गुणनखंड कीजिए:
(i) 9x2 + 6xy + y2
(ii) 4y2 – 4y + 1
(iii) x2 - y2/100
Solution
(i) 9x2 + 6xy + y2
= (3x)2 + 2×3x×y + (y)2 [∵ x2 + 2xy + y2 = (x + y)2]
= (3x + y)2
= (3x + y) (3x + y)
(ii) 4y2 - 4y + 1
= (2y)2 - 2×2y×1 + (1)2 [∵ x2 - 2xy + y2 = (x - y)2]
= (2y - 1)2
= (2y - 1) (2y - 1)
(iii) x2 - y2/100
[∵ x2 - y2 = (x + y) (x - y)]
प्रश्न 4. उपयुक्त सर्वसमिकाओं को प्रयोग करके निम्नलिखित में से प्रत्येक का प्रसार कीजिए:
(i) (x + 2y + 4z)2
(ii) (2x – y + z)2
(iii) (–2x + 3y + 2z)2
(iv) (3a – 7b – c)2
(v) (–2x + 5y – 3z)2
Solution
(i) (x + 2y + 4z)2
यहाँ माना कि a = x, b = 2y, c = 4z और a, b तथा c का मान सर्वसमिका
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca में रखने पर,
∴ (x + 2y + 4z)2 = (x)2 + (2y)2 + (4z)2 + 2(x)(2y) + 2(2y)(4z) + 2(4z)(x)
= x2 + 4y2 + 16z2 + 4xy + 16yz + 8zx
(ii) (2x – y + z)2
यहाँ माना कि a = 2x, b = - y, c = z और a, b तथा c का मान सर्वसमिका
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca में रखने पर,
∴ (2x – y + z)2
= (2x)2 + (-y)2 + (z)2 + 2(2x)(- y) + 2(-y)(z) + 2(z)(2x)
= 4x2 + y2 + z2 - 4xy - 2yz + 4zx
(iii) (–2x + 3y + 2z)2
यहाँ माना कि a = - 2x, b = 3y, c = 2z और a, b तथा c का मान सर्वसमिका
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca में रखने पर,
∴ (–2x + 3y + 2z)2
= (–2x)2 + (3y)2 + (2z)2 + 2(–2x)(3y) + 2(3y)(2z) + 2(2z)(–2x)
= 4x2 + 9y2 + 4z2 – 12xy + 12yz – 8zx
(iv) (3a – 7b – c)2
यहाँ माना कि x = 3a, y = – 7b, z = – cऔर x, y तथा z का मान सर्वसमिका
(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx में रखने पर,
∴ (3a – 7b – c)2
= (3a)2 + (–7b)2 + (–c)2 + 2(3a)(–7b) + 2(–7b)(– c) + 2(–c)(3a)
= 9a2 + 49b2 + c2 – 42ab + 14bc – 6ac
(v) (–2x + 5y – 3z)2
यहाँ माना कि a = - 2x, b = 5y, c = –3z और a, b तथा c का मान सर्वसमिका
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca में रखने पर
∴ (–2x + 5y – 3z)2
= (–2x)2 + (5y)2 + (–3z)2 + 2(–2x)(5y) + 2(5y)(–3z) + 2(–3z)(–2x)
= 4x2 + 25y2 + 9z2 – 20xy – 30yz + 12zx